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Abstract

This paper deals with the Bayesian methods of comparing different types

of dynamical structures for representing the given set of observations.

Specifically, given that a given process y(*) obeys one of r distinct

4
X

stochastic difference equations each involving a vector of unknown parameters,

we compute the posterior probability that a set of observations {y(1),...,y(N)}
obey the ith equation, after making suitable assumptions about the prior
probability distribution of the parameters in each class. The difference
equations can be nonlinear in the variable y but should be linear in the parameter

vector in it. Once the posterior probability is known, we can find a decision

rule to choose between the various structures so as to minimize the average

value of a loss function. The optimum decision rule is asymptotically consistent

i ——————

{ and gives a quantitative explanation for the 'principle of parsimony’ often used
{ in the construction of models from empirical data. The decision rule answers
a wide variety of questions such as the advisability of a nonlinear transforma-
tion of data, the limitations of a model which yields a perfect fit to the data
j : (i.e., zero residual variance) etc. The methcd can be used not only to compare
i different types of structures but also to determine a reliable estimate of spectral
density of process. We compare the method in detail with the hypothesis testing
method, maximum entropy spectral analysis method and other methods and

give a number of illustrative examples.

‘ .} *t?is6g«>rk was supported by Air Force Office of Scientific Research under Grant
= ¥ 74-2661.
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l. INTRODUCT ION

For determining an appropriate representation for a given time series, one
usually assumes a certain structure involving a set of parameters and the values
of these parameters are estimated from the given data. For many of the geo-
physical or hydrological time series, the physics of the problem is not well
understood to specify a unique structure for the stochastic process. In these
cases, one of the main reasons for the construction of models is for understand-
ing the dynamics of the process. Hence instead of restricting ourselves to one
particular structure like autoregressive structure, a linear combination of
orthogonal polynomials in time t or a fourier series, we should endeavor to
quantitatively compare the validity of these widely different structures for repre-
senting the given data. For every structure, we should try to determine the
probability that the given set of measurements could have come from that struc-
ture and choose that structure which has the highest probability.

We will first clarify the notion of structure and model because these
words are used in widely differing contexts. Consider a stochastic process
y(+) € y which obeys a stochastic difference equation (1.1).

fily(t)) = g, (t,y(t-1),...,y(t-m.),0) + w(t), (1.1)
where f, etc. obey the following assumptions (A1) - (A3).

(A1) fi(y) is any differentiable function of y such as Iny +C, y + C, y2 +C,

etc.; fi: y > R.

The constant C is chosen so that the empirical mean of fi(y) with the given

N
set of observations £(N) = (y(1),...,y(N)) is zero, i.e., C = {1/N) [ fi(y(t)).
n, t=1
i

(A2) Let 0= (e',...,en )T e R 9; is any function linear in 6, but not
‘ 4

necessarily linear in y(t-1), t etc. m; is any integer greater than or

equal to zero.

i kil
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when m, = 0, the function 9; is defined as a map g T X R " -+ R.
The parameters m. and n characterizing the function 9; will be of particular interest

later in developing decision rules.

(A3){w(*)}is a sequence of I.1.D. variables with distribution N(0,p) and w(t) is
independent of y(t-j), j > 1, 0 <p < =,
A model is a 4 tuple {fi’ 9;+9,p} uniquely associated with the difference
eq. (1.1). A process y(*) is said to obey a model {fi’ 9 8,0} if it obeys

the associated difference equation (1.1).

Let Ci be a class of models having the same functions f and g but differing

4 in 6 or p.

€ & (Fagpampany, 4}
"{(fiv gi, Q.D)t ge®iyof_p<°°}’ (‘-2)
where

n
®i={e_z==(e‘,...,en )T, ei#o vi,eeR'} (1.3)
i

Ci is labelled as the ith class or ith structure. Two classes Ci and Cj are said

to be mutually exclusive if they differ in the functions f or g, in a nontrivial

T T P S Y T S R YT Y T VTR -

e ———— e

way i.e., there is no process which obeys a model in Ci as well as a model in

Cqo
J
Given r mutually exclusive classes or structures C‘,...,Cr and a set of ]
observations £ = {y(1),...,y(N)} our intention is to develop a decision rule to

assign the observation set to one of the classes among Ci, i=1,...,r soas to

TR~ TR P
-

minimize a suitable criterion function and also determine the probability of

error associated with the decision. The loss function can be chosen to reflect
the particular needs of the problem, such as forecasting or estimation of

spectral density.
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We recall that the only restriction on the classes C' is that the functions

9;» i =1,2,... must be linear in 8. Hence the theory allows us to simultaneously

compare widely different structures or classes such as (i) the class of autoregressive

(AR) models of order m, iny, (ii) the class of AR models of order m, inIny, (iii)
the class of models made of ms orthogonal polynomials in the variable t, (iv) class
of harmonic models involving certain frequencies, using the same data.

Problems of this type are referred to as compound hypothesis testing in the
statistical literature [2] and there is no general theory to handle them. There are
specific tests for comparing specific pairs of c!asses such as classes of auto-
regressive models of 2 different orders. Even here the solution is unsatisfactory
for a number of reasons such as (i) the choice of arbitrary quantities like
significance levels (ii) lack of any measure of the type Il error involved, (the
chosen significance level places an upperbound on the probability of type | error)
(iii) the intransitivity of the decision rule and its lack of any optimality
properties etc. There are also many other adhoc rules such as likelihood ratio
rule [2] or MAIAC [3] which do not usually possess asymptotic consistency or give
a measure of the probability of error of the decision.

Some common problems occurring in the analysis of empirical time series are
really problems regarding the appropriateness of the different types of structure
for explaining the data. It is being increasingly realized that the traditional
methods of spectral analysis involving the use of window functions like those of
Bartlett or Hamming [6] often lead to misleading inferences. To overcome such
objections, geophysicists use a special method of spectral analysis known as maximum
entropy spectral analysis (MESA) whose inferences have greater reliability than
those of the traditional methods. The method effectively assumes an autoregressive
(AR) structure for the process. If we pose the problem as one of comparing

different classes of models having different orders of AR models as done here,
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we will obtain a solution which overcomes many of the disadvantages of the MESA

method, without sacrificing the advantages. Moreover, we can choose the decision
rule to minimize a loss function which explicitly reflects the needs in the con-
text namely minimizing the errors in the estimation of spectral density of the

process. Similar problems are faced in the spectral analysis as applied to the

processing of acoustic signals also [7].

In our paper we will first compute P(Cila), the posterior probability of
the given data having been generated by some model in Ci, for every i = 1,...,r,
assuming a suitable prior distribution for the classes and the various parameters.
Subsequently we will derive optimal decision rules according to various types of
criteria and discuss the asymptotic consistency of the decision rule. We will
give many types of examples such as (i) whether a nonlinear transformation of
the data will yield a better representation of the data, (ii) when is a

polynomial fit of the data (or a fourier series representation of the data)

T

with zero residual variance inferior to a relatively small order autoregressive

g representation etc., and point out the superiority of the method tv existing

I

! methods of comparison like hypothesis testing [1,2], maximum entropy spectral

P RN

{ analysis [4,5,10], etc.

Even if all the classes have the same prior probability, the posterior

probability of class Ci being the correct class for the observation set &(N)

having N observations is, under appropriate assumptions

exp[0.5 h, (£(N))]
| P(C,[eN) = — ,

) | k{l exp[0.5 h, (E(N))]

e a Al

I = 1,000yr (1.4)

e

i

hi(E(N)) = 2N In f; - (N-mi) ln(pi + (p:‘:i'pl)/N) -=n; InN

g tm - (/o) I (F )2+ 00/ (1.5)
- t=1
E | = 125006,




where Ta f is the empirical mean of the function In[d fi(y)/dy]IY = y(t) , Pe

is the empirical variance of fi(y(t)) and P, is the residual variance. The
expression (1.5) clearly brings out the adverse effects of dealing with classes
with large Ni» i.e., having too many parameters to be estimated. The role
played by the lag variable m and the number of estimated parameters n; is quite
different in general even though.in the widely discussed case of autoregressive
processes m, = n.. Further, even if p; = 0, as in polynomial models,

P(CiIE(N)) is still finite. These and other features will be discussed

extensively in the subsequent sections.

1l. ASSUMPTIONS

For simplicity we will denote a class Ci by the 4 tuple [fi, 9;» M, ni].
The suppressed term@i will be mentioned wherever necessary. Further fi(t) A
fi(y(t)). Similarly the function g; will be written as gi(t,g) suppressing the

other arguments. Moreover g; can be written as:

g; (t,9) (gi(t-lﬁrg, where z, is independent of 9,

z; (t1)

,egi(t,g), n, - vector

We consider r classes C;, i = l,...,r,C' iz 9 Mo ni] where fi and g,

i

obey the conditions (A1) - (A3). We will make the following additional assumptions

on the functions f, g etc.

(Ak) The functions f. and fj and g; and 9; obey at least one of the following
conditions for every possible pair (i,j), i # Jj, i,j = 1,...,r

(i) fi(y) # kfj(y) + C for any k,C and almost all y

1
(ii) For every 6 ¢ Q}i, there does not exist a 8 ¢ @9j satisfying the

following relation

gi (t’y(t-l)9~ "’y(t-mi)lg) - gj (t,Y(t'l),..-,Y(t'mj),el)
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(AS) If a process y(+) belongs to one of the classes C;» i =1,2,...,r, then

[1/N Z z, (t- I)zT(t 1)] is finite and positive definite for all N and

t=mi+l

éi [ R
We need the following assumptions regarding the prior probability distri-
bution of 6 and p and the probability distribution of the initial conditions for

.1}
(A6) Let x(t) = f (y(t)). The m; initial values y(l),...,y(mi) of a process

y(+) obeying any model in Ci obeys the following normal density
px(1),00ux(m)) - NIQ,R]
31 where 0 is the null. vector of dimension m. and R; is a m. xm; covariance matrix.
(A7) If y(-) obeys a model in C;, involving m; lagged variables, then the prior
density of 6 and p obeys the following relation:
P@,ely(1),...,y(m),C;) = p(g,elc,)

(A8) The variable p has the following probability density:p(plt? = a/p, o > 0 valid

for all i.

(A9) The variable 6 efﬂbi has the following conditional prior density given p:

P(Q(P,Ci) o N(QOi"§0ip)

where §0i is a

(A10)The prior probability of class C, is P(Ci), e 2 DS P(Ci) <1,

Liap PLC) =

We will discuss the assumptions. The assumption (A4) and condition (1.3)

are sufficient for the classes C],...,Cr to be mutually exclusive, i.e., there
does not exist a process y(-) which obeys 2 different models in 2 different
classes. (A5) is needed for the existence of the matrices occurring in the
optimal decision function. To understand (A6) and (A7), we should note that we
have not made any assumption about the stationarity of the process y obeying any

model in C, for any i. Specifically, if y(*) belongs to C,» then {y(1),...,y(N)},
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the observation set is generated as follows: y(l),...,y(m‘) act as initial
conditions. Based on y(l),...,y(mi) and w(mi+l). Y(mi+|) is generated from
(1.1), and y(t), t > mi+l are generated recursively using (1.1). Clearly the
initial conditions y(l),...,y(mi) cannot throw any light on the parameters © and
p which characterize that particular model in C. obeyed by y(*). This statement
is the assumption (A7).

The assumption (A3) yields the conditional probability density p(y(m‘+l),...,
y(N)Iy(l),...,y(mi)g,p,ci) as shown below. This expression in conjunction with
(A6) and (A7) yields the joint probability density of all the observations
name ly p(y(l),...,y(N)lg,p,C). The details are indicated below.

p(xi(mi+l),...,xi(N)|xi(I),...,xi(mi),ﬁ,p.ci)

= I P(xi(t)lx,(t-l),...,xi(l),e,p,C), bY (A3)
t=m.+] :

N
= 1 = epl-1/20(x (1) - g, (£,00)%1, by (A3)  (2.1)
t=mi+| Y2wp

Transforming the variables x into y by the relation xi(t) = fi(y(t)). (2.1)

yields:

ply(m+1),...,y(N) [y(1),...,y(m,),8,0,C;)

= 1 (f,(t)/V2mp)exp[-1/20(f (y(t)) - gi(t,g))zl, {2.2)
t=m,+1] : :

where f1(t) = (d f,(y)/dy)ly = y(t)

p(Y('))"',Y(mi)le’psci) - P(y(l),...,y(mi)lci), by (A?).
m, ;
mof,(t) :
t=|
-t '77exp[-(l/z)lI(fi(l),...,fi(mi)nR _11» by (a6)

i (2n) 1 (det R,) i

(2.3)
Multiplying the expressions (2.2) and (2.3) yields the required density

ply(1),...,y( N)|6,p,C,).
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The prior density of 9 given p in (A9) is so chosen that the posterior

density p(elp,E,Ci) is also Gaussian. There is an extensive literature on
the choice of the prior density of p. The density p(p) given in (A8) is commonly
used in statistical literature and can be defended on many different grounds [8].
However it is called improper since fap(p)dp does not exist for a = 0. But in
computing the posterior density, we‘an allow the limit a) to be zero.

We will offer some suggestions for the choice Of\POi and,§°i, occurring
in the prior density p(glp,ci). The only guideline available for the choice

of is that it be relatively large in view of the great initial uncertainty

Soi
regarding the value of 6 appropriate for the given data. Even though the effect

of gOi a"d\§01 are asymptotically insignificant on the optimal decision, still

the arbitrary choice of eOi and SOi for various i may make the computation of

the p(Cilﬁ) more cumbersome than it need be. Accordingly we propose that the

following choice for Soi’ e ] e |

oSZ

(A1) s, = [1/N-m, z (t-)z) (¢-1)]7 :
~0i i ~i ~i |

t=mi+] |

|

The choice in (A1l) is unconventional in the Bayesian literature since it |

depends on the observations. However, we will show later that such a choice

implies the following expression for the posterior variance of @ given £ and p
Var[e]£,p,C;] A S; = So;/ (N-m;+1) (2.4)

our choice is reasonabie since §0ip is much larger than the posterior variance

S.p. Any other choice for the §Oi would have made the expression for Si more

i
complicated than the one in (2.4).

Next let us turn our attention to the choice of the vector 9'0 occurring

in p(e|p,ci). The obvious choice for §,, is the null vector,stated in (A12).

(A12) 80 = [0,...,0]T, (n;-vector)
It is important to realize that (A12) is valid only if f'(-) is chosen
N
as stated in (A1) i.e., I/N [ f.(y(t)) = 0. Otherwise, (A12) will be inconsistent
t=1

with the fact that mean of w(+) is zero in eq. (1.1).

s o . TR T i
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Finally consider the covariance matrix R; occurring in (A6) i.e., the
probability density of the initial conditions y(l),...,y(mi). The effect of
this term on the final decision rule is not strong. Hence to simplify the
computation, we make the assumption (A13).

SRI3N. R moyt

where p.. = empirical variance of fi(y(t)).

I1l. THE POSTERIOR PROBABILITY P(CilE)
Let £ = {y(1),...,y(N)}
P(c,le) = p(glC;) P(C;)/p(E)
= [ do ge@glgl p(Elg,e.C;)p (@0 C,)P(C,)/p(E) (3.1)
The expression for p(EIQ:p,Ci) has been derived in section I1. p(g,plci) is

available from assumptions (A8) and (A9). Hence the integration in (3.1) can

be performed as indicated in the appendix | leading to the following theorem 1.

Theorem 1: Under the assumptions (A1)-(A13),the posterior probability P(Ci|E)

has the following form

P[Ci|€] = K exp [0.5 hi(E)]

where
r
K= I/.ZleprO.S h, (€]
|=

hi(g) = 2N In 'Ii e (N-mi) In (pi + (pfi-pi)/N)

+ 2 1In P(Ci) -0 In N - m, In Pe; * Gl(mi) + 0(1/N)

i
Gy ) = my - (og) (f, (£))?
t=
8 T 2
p; = l/(N-mi) ) (f'(t)-gi(t-l)g*)

t=mi+l




11
N

N
0% = [(N-m+D)/(-m)1L § 2 (=D (=017 § 2, (-DF, (1)
t=m.',+| t-m‘-l-l

N ' '
™ - (I/N)tzlln Fle), Fi(8) = d f(0/dy| ()

Pe; = ('/N)tgl(fi(Y(t))z A empirical variance of {fi(y(t)),...,fi(y(N))}

A proof of Theorem 1 is in appendix 1.

Comment }: An expression for the P(CiIE(N)) without the assumptions (All)-
(A13) regarding the parameters of prior distribution is given in lemma 1 in
appendix 1. Obviously it is computationally more complicated.

Comment 2: E[G](mi)lci] =0

Variance [Gl(mi)‘ci] = 2m,

Hence G|(mi) is of the order 0(/hi). While comparing 2 classes having
different values of L the term Gl(mi) does not make much difference in compari-
son with other terms and hence can be neglected when N is large.

Comment 3: The model (f_, gi,\g?. p?) is the best fitting model in the class

Ci for the given data £. Alternatively, if £ obeys some (unknown) model (fi’

9;» 9, p) in Ci, then 9? and p? are the Bayesian estimates of 8 and p.

We will discuss many other features of the posterior probability function

P(Cilg) in section V.

IV. OPTIMAL DECISION RULE AND THEIR CONSISTENCY

1. Optimal Decision Rules:

Let d(E(N)) be a decision rule where d is a map:

d {Cl""’cn}
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Consider a loss function L which reflects the cost of wrong assignment

SR i i S

of the observation set £ to a class Cj using the rule.

L(Ci,d(E) = Cj) =0 if Ci = Cj

>0, if Ci # Cj

W, .
1

Our intention is to choose the decision rule to minimize the average value of

the loss function L, i.e., minimize J(d)

i § SR J(d)

o A M

E[Q(c;adﬁﬁ))]

:
iZIP(ci) [ L(c;,d@)P(elc,)d|g]

or
v
] J((E) =c.) = [(Jw,.P(C.|E))p(E) d|E]
: J ] R
The optimum decision rule is

r

E d*(g) = C, = Argument Minimum ) Wi-P(C-‘E) (4.1)
3 J i

3 Cje{Cl,...,Cr} i=1

The loss function or,in particular,the weights wij can be chosen to reflect

the particular needs of the problem. If we are interested in minimizing the

probability of error in the assignment of class to £, the choice of wij is

1 Wi =0 if =

s =1 if i # ]
In that case, the optimum decision rule is;

d*(g) = C, = Argument [Maximum P(C:|€)] (4.2)

Cje{cl,...,ér}

i.e. The decision rule assigns £ to the class having the highest posterior

probability.

Probability of error of the optimal decision rule (4.2) = [1-Max P(CJIE)]
C;
j (4.3)

On the other hand, if our sole interest in class selection is to obtain a

reliable estimate of spectral density, then we should choose W.. as follows

ij
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where Si(m) is the '"best' estimate of the spectral density of the process based

i ey

R

;? on £ given that the process £ belongs to class Ci. In that case, the optimum

decision rule (4.1) simplifies

ax(€) = ¢; if (In P(Cj|£)'H)2 < (inp(c,|E)-W% v i #j, (4.4)

with

o b - Sl AR

=
H= ile(cilg) InP(c,|€) (4.5)

The 2 illustrations should be sufficient to reveal the power of the decision
rule to reflect the needs of the particular problem.

2. Consistency of the Decision Rule:

We will show that the optimum decision rule in (4.2) is asymptotically con-
sistent. The consistency of other optimum decision rules such as (4.4) can be
established in a similar manner. Without any loss of generality, let us consider
the comparison of only 2 classes CI and C,. If the process y(:) comes from some ]

2
(unknown) model in class Cz, then we will show that P(CZ|E(N))/P(C||E(N)) tends

1 to+ « as N tends to infinity showing that the decision rule correctly classi-
1 { fies the observation set. A precise expression for the P(C2|E(N))/P(CIIE(N)) is i
given in the following theorem 2.

We should emphasize that the asymptotic behavior of P(C2|E(N))/P(C'|€(N)) when

C., is the correct class may be quite different from the asymptotic behavior of

2 1
! P(C'|E(N))/P(52|5(N)) when C, is the correct class. '3
Theorem 2: Consider a pair of mutually exclusive classes C| and Cz, Ci =

{fi,gi,m;,ni,dai} under the assumptions (Al1)-(A13). Assume that the given

process y(+) obeys a model {fz,gz,gz,pz} € Cz where 92 and p, are unknown,

Py > 0.




3
]
;
i

Case (i) Let f, = f, (4.6)
n, > n, : (4.7)
For every g’qui, there exists a 6 € R | so that (4.8) is satisfied.
9,(t,8) = g,(t,8') (4.8)
Then
Lin [P(G, [c00)/p (6 [e00)1'"™ = expl(n)n;)/2] (4.9)

Case (ii) f, = f,, but ny» N, and g, and g, do not obey either (4.7) or (4.8).
Then

Lin [P(c,leM)/p(c e ™ = kg > 1 (4.10)

Case (iii) fl # fz, then redefine the variable y so that fl(y) =y + kl'
relabel fz(y) as f(y). Assume f(-) obeys the following assumption (Bl1).
(BY) If f(y) is normal, then
ELy-9)21 > EL(F(y)-F (1)) 21/exp [2E 1n £ (y)]
where y and ?(y) stand for mathematical expectations of y and f(y) and f' is
the derivative of f(y).

Then the limit given in (4.10) is also valid. Q.E.D.

The theorem is proved in appendix 2.

The assumption (B1) appears to be obeyed by most differentiable functions
such as f(y) = Iny + k3. fly) = y2 + k; etc. Still we have stated it as
assumption since we do not have a proof of it.

Case (i) is valid for a pair of classes C, and C, where C, is obtained from
Cl after setting certain components of the parameter vector 6 in C‘ to zero, and
the true process obeys Cz. A common illustration is Cz in a class of AR models
of order n, and CI is a class of AR models of order LITRLT > Nys with the correct
model belonging to Cz. In such a case, theorem 2 roughly states

n,=n .
P(C,1EN))/P(c, |EN)) ~ exp( '2 2 . g0 n) = n(M"2)/2

e A7

SR Gt v kG i
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_(n‘-nz)/2
or posterior error probability 4 P(CIIE(N)) =N (4.11)
In all other cases, covered by Cases (ii) and (iii)
N
PC,[EN))/P(C, [EN)) ~ kyp Ky > 1
or posterior error probability = P(CIIQ(N)) ~ k;N (b.12)

Eq. (4.1)) clearly illustrates the empirically known fact that it is easier to
distinguish 2 classes with entirely different structures, coming under Cases
(ii) or (iii) than to discriminate between 2 classes with similar structures
where the structure of the difference equation in Cz, the correct class can
be obtained from that of Cl by setting a few parameters in it to zero, i.e., it
is difficult to distinguish the correct class C2 from the higher order class
C,. Note that if C

1 1
an example of Case (i) and the error probability decays exponentially.

and C2 have similar structures, but " < Ny» then we have

V. DISCUSSION AND COMPARISON

1. Main Characteristics of the Decision Rule:

We will highlight some of the important features of our decision rules.

Most of these features are absent in the decision rules based on hypothesis
testing and other methods which will be discussed subsequently.

(P1) The decision rule can compare simultaneously many classes obeying the
conditions in Sections | and I1I.

(P2) The decision rule is transitive, i.e., Let Ci}- Cj denote that in com-
paring the classes Ci and Cj, the decision rule prefers C‘ to Cj' Then C' ?—cz
and C2>- C3 =»ler c3 provided all the classes are equiprobable.

(P3) The decision rule is asymptotically consistent, i.e., while comparing

2 classes ¢, and Cy based on the observation set £(N), then Lim P(C2|E(N))/

N-»eo
P(Cllz(N)) + o if the observation set comes from some (unknown)membe; inC, and
=(n,-n,)/2
the error probability P(C‘|£(N)) decays at least as fast as N Ve if

-N
n > n, or k2 where k2 * 1.
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(P4) The decision rule is optimal in the sense that it minimizes a

Vot 5. Bt b

suitable loss function which reflects the needs of the particular problem.
(P5) An explicit expression is available for the probability of error

in the decision given by the rule.

(P6) The only arbitrary quantities appearing in the decision rule are

the prior probabilities of the classes. There are no other arbitrary quantities

like significance levels. The effect of the assumption about the prior probabili-

ties is asymptotically negligible unlike the significance levels used in the

hypothesis testing methods. Typically the prior probabilities of the classes
i} can be assumed to be equal.
(P7) The roles played by m. and n; in the decision rules are quite

different. The contribution of terms involving m, to In P(C'IE) is 0(1) where

o

as the contribution of terms involving n, is 0(In N).
- (P8) The posterior probability P(C;IE) involves a term exp[-ni In N] even

if all the r classes are a priori, equiprobable. When we are comparing 2 classes

Ci, i = 1,2 such that they yield the same value of CR and In fi’ i= 1,2,
t the posterior probability of the class having smaller n; will tend to 1 as N tends
to infinity. This is a quantitative proof of the 'principle of parsimony' which

states that if 2 models explain the same data (i.e., have same p), the model

fo i 0

involving smaller number of estimated parameters has a higher plausibility of
being the correct model of the process than the other model.

(P9) The decision rule for comparing classes is valid even if one of the
members of a class yields a zero residual variance (i.e., p; = 0) with the given

! data. This is possible because p always appears in the decision rule in the

form Inlp + (pf-p)/N]. Hence even if p is zero or very small, Infp + (pf-p)/N]

is still finite. This property is very useful in comparing stochastic models

iy il

like autoregressive models involving a small number of parameters with polynomial
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or fourier series models which involve a large number of parameters, but yield
low residual variance.

2. Comparison with the Hypothesis Testing Approach:

This approach does not possess most of the properties (P2)-(P9). The
hypothesis testing approach is usually designed to test whether certain com-
ponents of vector 0 in the difference equation of form (1.1) are not signifi-
cantly different from zero (hypothesis Hy or null hypothesis) or the contrary
(hypothesis H'). Consequently the method can be used to compare only 2 classes
at a time and these classes form a small subset of the classes mentioned in
(P1). A typical application is when eq. (1.1) is a n, order autoregressive
(AR) equation and the null hypothesis is that the given process y(*) obeys
an, order AR process, n, <0, i.e. the null hypothesis is that the coefficients
of y(t-n2+l)....,y(t-nl) in (1.1) are all zero. Even here, we will show in
example 4 that the decision rule is not always transitive (property P2) and the
decision rule is not always asymptotically consistent (property P2). Hypothesis
testing is routinely used in problems where the danger of rejecting Ho when Ho
is true (type | error) is very much greater than accepting HO when H0 is not
true (type || error). The decision rule is designed to place an upperlimit on
the probability of type | error, but no measure of the type Il error is available
(property P5). Thus the decision rule is inappropriate for problems when both
types of errors are important. The decision rule involves an arbitrary parameter
like significance level (i.e., probability of type | error allowed), (property
P6). In general, the decision rule is not optimal in the sense that any
specific criterion function is minimized (property P4). Further the hypothesis
testing cannot handle a relatively simple comparison problem such as whether
normal distribution or log normal distribution is appropriate for representing

the given data or whether an autoregressive process or a polynomial fit (or

il deieb L
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orthogonal function) is appropriate for representing the given data (property

P9). Examples 1-4 bring out the limitations of the hypothesis testing approach.

3. Other Ad-Hoc Procedures:

There are many adhoc procedures for comparing several classes of model. The
criterion MAIAC (3], is used for comparing classes of autoregressive models of
different orders. For each class, we compute ai(E) =-Nlnp; - 2n,, where
CP residual variance of the best fitting model in class Ci
n; = number of parameters to be estimated.

Chosen class is Ci = Argument max[ai(E)]
C
i

Here there is no distinction between m; and n,. The term -Zni is inserted into
the decision function using certain ideas of information theory, but there seems
to be no particular reason for the factor 2. The decision rule is transitive.
However, the decision rule has no optimality property. We have no idea of the
probability of error of the decision rule. Most of the examples 1-4 are outside
the scope of this rule. In particular, the rule cannot be used to compare classes
in which one of the models such as a model with n orthogonal polynomials in t
gives zero residual variance for the data since ai(E) = oo,

One can show that the use of decision rule is equivalent to the use of g
hypothesis testing procedure at an appropriate significance level [1].

Another adhoc approach is the maximum likelihood approach [2] in which
we maximize the likelihood function in each class over the allowable set of
parameters and choose that class which has the largest maximum likelihood value E

among them. As before the rule is not always asymptotically consistent

and we have no idea of the probability of error given the rule. Further it is
invalid for comparing 2 classes of AR models with different orders, since the

maximum value of likelihood function associated with the class with larger




order is usually greater than that of the smaller order AR class. Similarly
it cannot handle pairs of classes mentioned in (P9). The examples (1-4)
bring out the relative merits of the various methods.

L. The Maximum Entropy Spectral Analysis [4,5,10]:

The original aim of the MESA approach is to obtain a reliable estimate of
the spectral density of a process y from its N observations. Instead of assuming
an arbitrary structure for the process, they found a structure for the process
y(*) to maximize the entropy function under the following 2 restrictions
(i) y(+) is stationary and zero mean
(ii) A1l the correlations of the process up to mth order are known, i.e.,
¢., i =0,...,m are known where ¢, = Ely(t)y(t-i)].

The result is an autoregressive structure for the process namely
m
y(t) = Ja. y(t-j) + w(t)
t=1J
where w is a zero mean sequence N(0,p) and CIEERRTL . and p are determined from
the known autocorrelations ¢i’ i =0,...,m. The required spectral density is
the S(w)
"imwl IZ

S(w) = p/|]1 - ale-iw... = B

T R O

In practice, ¢i are not known and hence we replace them by the corresponding

emperical correlation coefficients computed from the N observations y(1),..., ;

y(N). ;
The key choice in the method is the integer m. The method does not suggest

a method for the choice. The maximum value of m is N. Typically m can be 0.IN

or 0.2N. The value of integer m is increased till the estimated spectral density
shows sufficient resolution in the required frequency range.
On the other hand, if we use the approach of Section Ill for the selection

of m, we have all the advantages of MESA method and the additional information




such as the posterior probability of Ci being correct class, an estimate of

the variance of spectral density estimate etc. which are not availiable in MESA.

In particular we can choose the decision rule to minimize errors in the

estimation of spectral density as indicated in Section IV.

We will give 4 gxamples to illustrate the relative behavior of the various
methods of comparison. In all the examples, the test observation set is £ =
(y(1),...,y(N)). If C, is the class, the corresponding residual variance is
P and the corresponding signal variance is Peie Ci }'Cj means that the
decision rule prefers the class Ci to C-.| when the associated conditions are
satisfied and the reverse if the conditions are not satisfied. The function fi(y)
is chosen as mentioned in (Al).
Example 1: This example is used to illustrate the empirically observed fact that
models which involve the estimation of a large number of parameters are usually
inferior to appropriately chosen models involving a small number of parameters,
even though the larger parameter model may result in zero residual variance.
Specifically the 2 classes are

C] = {f‘(y) = y+k, gy» My = 0, n, = N}

C2 = {fl’ 9y M = 1, n, = 2}

2
N-1
9,(t,@) = 0, + ) 8,19, (t=1)
k=1
gz(t.y(t-l),e) =0 + ezy(t-l)
where l,¢|(t) ¢2(t)... are a set of orthogonal functions orthogonal over t =
[1,N]. They can be polynomials or sinusoids. C2 is the class of first ordar AR

models. Since our data set £ has N observations, Pys the residual variance of the

best fitting model in class C‘ is zero. Let Pgy = Pgp =P, = empi rical variance

Yy
of y(+).
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We can assume Py >> py/N. Decision rule (4.2) yields

CZ>'Cl)if -(N-2) In Py - 21InN-21n oy > -N ln(py/N) -NinN

Retaining terms of order 0(1) and higher, we get

C2 ? C, if py/p2 > exp[(2 In N)/(N-2)]

For instance, if N = 100
€, } € If oy < .91 Py
i.e., as long as the first order AR model explains about 9 percent of the
signal variance, the AR model class is superior to the class of models with N
polynomials, inspite of the fact that residual variance oy = 0. The superiority
of first or second order AR models to polynomial or orthogonal function models
in modeling many (but not all) empirical series is well known to the workers
dealing with empirical model building beginning with the work on sunspot series
[9]. However the superiority of the AR model was demonstrated by an elaborate
procedure like comparing correllograms and other validation methods [1]. In
contrast the present theory offers a relatively simple quantitative explanation
of this phonemenon.

Note that the conclusion is the same if we had compared CI with any other
class C3 of models involving 2 parameters, say, the class of models involving
only 2 orthogonal functions, i.e., C3 is the class of all straight line fits
to the data in the plane [t,y(t)] and C, is the class of polynomial fits.

As before, we should prefer the straight line fit if it explains at least 9
percent of the signal variance in preference to the polynomial fit which yields
zero residual variance.

Example 2: We compare 2 classes Ch and C5 having same n,, but differ in fi and

i’
possibly in 9;-

<
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Ck = {fh' 9y M, n}
CS = {f5’ gg» M, n}
fh(Y) =y + k‘, fs(y) =lny+ k2
Let Pey = empirical variance of y(1),...,y(N)

Pes = empirical variance of Iny(1),...,Iny(N)

iﬂ Tny = empirical mean of Iny(1),...,1ny(N)

i .

$ By decision rule (4.2)

: In(pgy/pce)
1 i x — N f4y' 5
3 CS { ck if In(ph/ps) > 2 lny(N_m) + N

: -m
X

Note that the decision rule asymptotically does not depend on N explicitly.

(1t depends on N via CR etc.).

As a particular illustration of this family of problems, let us determine

whether a normal distribution or a log normal distribution is appropriate for

representing the given observation set. Thus

Cu={f", g“,m O,n=‘}

C5 = {fs, gy» m=0, n = 1}

fly) =y *+ ky, foly) = Iny + k,

i at et .

g"(t,e) e el' gs(t’e) = el’

HOFQ Py, % Py P % B 4

The decision rule (4.2) simplifies into E
cs’y ¢y if Inlogy/ogg) > (2 Tay)/ (1 + 1/N)

; - The simplicity of the decision rule should be compared with the corresponding

l complexity in using hypothesis testing methods. Using the hypothesis testing

approach, we cannot directly compare the normal and log distribution fits to the

-
¢
.l

given data. All we can do is compare whether the normal distribution (y, pfk) is
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a good fit to the empirical distribution of the dataset at the 95 percent
significance level. Alternatively we can test whether the log normal distribu-
tion (Tn vy, pfs) is a good fit to the emperical distribution of y(1),...,y(N).
It is not difficult to construct examples in which we can find both the normal
and log normal fits are significant at the 95 percent significance level.
Example 3: (Autoregressive processes) We will compare 2 classes of autoregres-

sive models of orders e and n, respectively.

7
Ci = {f, 9> N "i}’ i =6,7, ny > ng

f(y) =y, pe = empirical variance of y
vegi (t.Q) = (Y(t-]) 9o "Y(t"ni))

Let N >> n¢, N >> n, and oy >> pf/N, i =6,7

¥
Decision rule (4.2) yields:

t:7)c6 if
-N In Py = Ny ln(pf/p7) - ny In N> -N In Pg = Ng ln(pf/p7) - ng In N

(n7-n6)[ln N+ 1n(pe/pg)]

e, €% Cu B In(pg/p,) ) Ny

v (5.1)

If Pg and pq are not too far from each other

In(og/o9) = (og-04)/0,
i.e., we should increase the order of AR model from ne to n7 only if the
fractional decrease in variance is greater than the quantity on the RHS of

(8.1}. If 0, = ng*tl, N = 200, (pf/p6) = 2 then RHS of (5.1) = .03155

7
i.e., we should add another AR term only if the fractional decrease in

variance is at least 3.15 percent.
Suppose we want to use the hypothesis testing approach. Then the decision

rule has the following form:

P P (ny=n )k (n.=n,,N)
c, ) Cg if 6077> 16 2.7 (5.2)

s S

o A S S e
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é
where k is a threshold depending on n6-n7,N and the significance level. It is
determined by the fact that if C6 is true then
N(c6-c7)/o7(n7-n6) - Flng=ng,N)
: For N > 100, the threshold depends only on (n7-n6).
Thus the principle difference between rules (5.1) and (5.2) is the absence

of the factor In N and the presence of the nonlinear threshold k in (5.2).

Example 4: Let Ci denote class of AR models of order i in which n; = i. Our

intention is to show that the decision rule given by hypothesis testing (i.e.

o I o SN il

;1 rule (5.2) is intransitive (i.e. it does not obey P2). Let P, denote the

residual variance of class C,- Let N= 100. Suppose we choose 95 percent

significance level.

k(1, 100) = 3.84 = kI f

4
We will presently show that the nonlinear dependence of k("l’"z) on n, is the

k(4, 100) = 2.38 = k

cause of the intransitivity.

If we compare C, and C, ., (5.2) yields

N(pi-pi+') :ik] => choose Ci

2 gl 1 8 (5.3) i
§ Pis1 >k = choose C, . g
Suppose we compare Ci and ci+h ‘
F | N(pi-pi+h) :-kh => choose Ci (5.4)
e | Bpi+h > k“ => choose ci+h

SN S

Suppose the numerical values of Py i=1,2,...,5 obey the following relations

T AR | ST R O Pt W s

(5.5) and (5.6) which are not inconsistent

I
EY bk P k
| i T'i+|<-‘%<()+nl) (5.5)
'i
i k

F
| 4
[

|
Pi/oi St =004 (5.6)
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The decision rule (5.4) and the left hand side of inequality (5.5) imply
(5.7)

Cs 7 €y (5.7)
Decision rule (5.3) and eq. (5.6) imply (5.8)
c, } Cigp o P = 1,.u,h (5.8)

Repeated use of (5.8) implies (5.9)

¢, 7 G (5.9)
Eq. (5.9) and (5.7) mutually contradict each other showing the intransitivity
of the decision rule (5.2).

Note, however, that the decision rule (5.1) is not intransitive since it

does not involve any arbitrary threshold.

VI. CONCLUSION

We have developed a method of comparing different classes of dynamical
models using Bayesian theo;y. The method can handle a wide variety of
classes and is much superior to the traditional methods of comparison like
hypotheses testing. The method clearly shows the limitations of models such
as polynomial fits which using a large number of parameters can render the
residual variance zero. It clearly shows that such models have no explanatory

power.

i
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Aggendix |

P s Sk i, dinatis

We will establish theorem 1 in 3 steps. We will first state lemma | which
gives an expression for P(C'|£) using only the assumptions (Al)-(A10). We shall

3 state lemma 2. Using lemma | and lemma 2, and the additional assumptions (All)-

(A13), we will prove theorem 1. Next, we will establish lemmas 3, 1, 2successively,
lemma 3 being required in the proof of lemma 1.

'i Lemma 1:

i S

Under the assumptions (A1)-(A10), the posterior probability of P(CiIE) has

the following expression

P(C;|€) = k exp[0.5h, (£) + O(1/N)], i = 1,...,r (1)

where

hi(g) = ZnAi - (N-mi)lnsi - n In N

+ In(det 5 /det ;) - In det R, + 2In p(C;) + b, (2)
by =my = (£, DR (E (), f )T (3)
N
| A; = (1/N) :Eld In fi(Y)/dyly-y(t) (%)
| B = 8y + (1/(N-m)) (8) s 13 (5)
3 l N 3
8 =0% -0, =5 t-£i+lzi(t-l)(fl(t) - z;(t-1)8,.) (6)
: N
4 s, = [s50 + 1 z,(e1) 2] (&= (7)
b ; tﬂm'+l
T S; = 5;(N-m,) (8)
0 ~ L T *y2
| oy = (1/(N-m))) [ (F.(¢) - z; (t=1)67) (9)
t-mi+l

i» z‘(t-l) = Veg(t,y(t'l)....,Y(t’mi),e)




Lemma 2:

Under the assumptions (Al11) and (A12) B; in (5) will simplify as follows

B‘ = pi + (Df"oi)/(ﬂ'm') (ll)
where
- 2
Pe; = I/N tzl(f‘(t)) (12)

Proof of Theorem 1:

Let us first use the expression for SOI in (A11) which simplifies S' in

(7) as follows

S; = Sg;/ (N-m+1) (13)
we can use (13) to simplify the expression In(det §‘/det SOi) occurring in (2).
Using (8) and (13), we get

(N-m,)
- ' i
In det Si - In det So; = In det[Soi ﬁ:ﬁ?:TJ In det SO!

n ln(N-m'/N-mi+l)

0

-n/(N-m') = 0(1/N) (14)
Next, let us use assumption (A13). Then b, in (3) simplifies into (15)

m
pprmp s g (F, () /0, (15)
t=]
clearly z[bllci] = 0.
Variance [bilci] = 2m,
Moreover, (A13) implies In det R, = m, Inpg. (16)
Substituting (11), (14)-(16) in (2), yields theorem 1. Q.E.D.
We need the following lemma 3 to prove lemma 1. To simplify the notation,
*

we will drop the subscript i hereafter, i.e., denote m a?. Bi etc. by m, 6,

p, etc.
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I (F(t) - 27 (e-1)0)2 (e-eo)Ts;'(e-eo)

= (e-e*)Ts"(e-e*) + (N-m)B

Proof of Lemma 3: Letd = ¢*-¢

(7)

0

N
t=£+l (F(t) - zT(t-l)e)z + (e-eo)ng'(e-eo)
N

= L (f(t) - 2 (t=1)0" + 2 (t-1) (6%-0))2
t=m+]

ot R, -~ 86 S R AR L AN I

+ (6-0* + é)Tsal(e-e* + 8)

Expanding the squares and rearranging terms

N
LHS of (17) = [(6*-8)T( I z(t-1)27 (¢-1) + s;')(e*-e)]

t=m+|
§ T % L el
+ L (F(e) - 2 (t-1)e%)2 4+ (8 )S, 6]
t=m+1

T -
+ [2(6%-0) '{ ] z(t-1)(F(t) - 2 (t-l)e*)-So 6}), (18)
t=m+]

Coefficient of (e*-e)T in (18)

Py s b e ot b e e Y g
< R ——

N
= I z(t-1)f(t) - ] z(t-1)z(t-1)e* - 58'6
i tem+ t=m+
| ! T N T -14z
‘ = T z(t-1)(f(t) - 2 (t=1)8)) - [ ] z(t-1)z (t-1) + S 19
k| t=m+ ] t=m+

= 0, by definition of 8 in (6) and (7) (19)
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Substitute (19) in (18) and rewrite R.H.S. of (18) using definition of B8 in (5)
and (9). We get

LHS of (17) = RHS of (17).
Proof of lemma 1:

Recall EI = {y(l),...,y(mi)}, £y = {y(mi+l),...,y(N)}.
N

Let k = tzl(df(y)/dy)ly_y(t) (20)
We will first compute p(g,l&,,0,C)
P(&,8).0,C) = [ dop(e,lg,,0,0,C)p(0]0,C,E,))
= [ dop(g,l€,,0,0,C)p(0]0,C), by (A7) (21)
N
1 G nad
= k f dI\QI Wexp['l/m) t='§+'(f(t) z (t ')e) ]

|
(2w)n/i»(Det Sop)

1 T.-1
177 expl- 35 (0-64) 'sy " (6-64)1,

using (2.4) and (A9).

1 1

=k [ d|a] (Zﬂp)(N-m+n)7i>(Det So)Iﬁexp["(I/Zo)
N 4
) (F(p) - zT(t-l)e)2 + (e-eo)Tsal(e-eo)}], by rearranging terms ?
t=m+1 j
1 ot T :
=k [ d|e] w72 . = so)llz exp[-(1/2p) (8-8%) i
s™!(e-6%)] exp[-(1/2p) (N-m) 8] (22) %

using lemma 3.

] (Det s)'/2
= k [-(1/2p) (N-m)8],
(2n0) W72 (pg, so)172 i i

Now we will integrate over p after multiplying by p(p|C) given by (A8)
p(gy1€,,C) = [ do plo]C)p(e,l€,,p,C)

172
= fdoS k (Det $) [-(1/20) (N-m)8]
} e 2oy TFMI7Z SO)T/T exp[-(1/20) (N-m
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= Zka fodx exp[-x2 (N-m)8/2) 1xN" m"(oet S/Det S )'/2/(2 y (N-m)/2,
using the transformation p = I/x it

- “k[ (N-m) 8/2] (N-m)lz T [ (N-m)/Z] [Det S/Det So] l/2/ (2") (N-m)/Z

Simplify the above expression using the expression for k in (20) and the standard

formula for I'(x) namely:
InT(x) = x In x = x + 1/2 In(20/x),

N
2 In p(Ezlil,C) =2na+2 ] 'ln f'(t) - (N-m) In B8 - (N-m)
t=m+

+ In[4n/(N-m)] + In(det S/det So) = (N-m)In2m, (23)

S is of the order 0(1/N). Hence we can define S = S(N-m), so that S is 0(1).

det S = (det S) (1/N-m)" (24)

By assumption (A6)

2 1n p(g]€) = - m In 21 - In det R + 2 Z In £'(¢) - [|[(F(1),. .f(m)llﬁ-l
t=1
(25)
2 1n p(g|C) = 2 In p(g,|£,,C) + 2 In p(g,]C) (26)

N
=2 Z'ln f'(t) - (N-m) In B - (n+1) In (N-m)
t=

+ In(det S/det SO) - Indet R+m- ||[F(1),...,f (m)||: -
~=NIn2r - N+ 2 lna + In(lr), using (23) and (25),

(27)
In p(C [€) = In p(E|C ) + In p(C ) - In p(E)

= 0.5h (£) + terms independent of any class + 0(1/N)
(28)

where

h () = 2 Z In f'(t) = (N-m) 1nB - n In N + In(det S/det S )
t=1

- IndetR +21Inp(C)+ (m=||Ff (1),...,f (m )||:-l

B e i S e coich

b g




————

Proof of lemma 2:

A T 2

Recall Pe =(1/N-m) T (f(t) - z (t-l)eo)
t=m-+]|

Recall that

N T 2
p =(I/N-m) )} (f(t) - 2 (t-1)0%)
t=m+1

N
=(1/N-m) X
t=m+

(£ () -zT(t-l)eo ~ ‘2 (t-11612, by detinitian of § In 6)
]

N N
=(/N-m) T (F(e) - 2" (=062 + @B T(Mm) T z(e-1)2T(e-1)

t=m+]| t=m+]

F B T
=280 ) z(e=1)(f(t) - 2 (t-l)eo)/N-m
t=m+]

Substitute for the coefficient of 8 in the last term using (6)
term by Pe and rearrange the terms.
-7 N T S
P=pe+ 0 (I/N-m J 2z(t-1)z (t-1) - 25 '/N-m)8
t=m+1]
=0 + (é)Ts;'é(l - 2(N-m+1)/N-m)
0S5 6 = (op - 0)/(1 + 2/N-m)
Z log = ) (1 - 2/N-m)
By definition of g in (5),
B =p +(1/N-m) 3)7s; "5

=9 +(1/N-m)(pf = p) + 0(1/N)

» replace the first
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Ageendix 2

We will outline the proof of theorem 2:

Let (fi’ 9;» e?(N), p?(N)) € Ci, i =1,2, be the best fitting models for
the given data in the 2 classes C' and C2,
Section I1l. We will assume that 9?(N) and p?(N) tends to 6, and o, as N tends

e?, p?, etc., being defined in

to infinity with probability one. In view of the assumptions (A1)-(A7), the
models in each class are identifiable given the class. Hence (f2, 9ys 62, pz)
the asymptotically recovered model is the exact representation of y(*) stated in
the theorem. Note that by definition, y(*) does not obey the model (fl’ 9y 05
p]). Rather, this model is the best fitting model in C, for the semiinfinite
data set {y(1),y(2),...}.

Recall that

Inlp(c,|e(N)/p(c, E(N))] = 0.5[h, (E(N)) - h,(£(N))] (1

Cases (i) and (ii)

Without any loss of generality, we can set f'(y) = fz(y) YRy
QI(t]t-l) = one step ahead predictor of y(t) based on y(t-j), j > 1 suggested
by the model (fl’ 9y Q‘, p])
= g,(t,8) - k, (2)
Ely(t)ly(t-3), J > 1] = g,(t,8,) - Kk
By definition of expectation and normality of y
Ely(e) - ¥, (tle=1)2] 2 EL(y () = §,(t[t=1))7]
| T CH :_pz

At this point, we will discuss the cases (i) and (ii) separately.

Case (i): The structure of g, and g, mentioned in this case imply (3)

|
i
]
|
4
o
|
;
|
|
|




Py =Py (3)
Lim o 11P(c, £ () /P (¢, |€()))]

(hy (E(N)) - h, (E(N))
InN

= Lim 0.5 {-N 1In 62 + N In 6] + (nl-nz)ln N+ 0(1)}

= Lim 0.5 {-N 1In Py + N In oy *+ (nl-nz)ln N+ 0(1)}, since 6‘ >0 and
N InN

52 > Py w.P.1.
= (nl-nz)/2, by (3)

n,=n
or  (P(c,lemN)/e(c, [ ™ 5 exp (LR,

2

In Case (ii):
P'>92
or o, =0, exp [k3], k3 >0

Lim & In[P(C,]E(N))/P(C,1£(N))] = Lim (1n 5, = 1n 5,) = k, > 0,

N->oo

i

or (P(C2|E(N))/P(C||E(N))'/N - exp[k3] A ky >

Case (iii):

[
~<
+
=~

Without any loss of generality we can set f](y) =
Define y, (t[t=1) as in (2).
By definition
oy & ELly(t) - y, (t|t=1) 3|y (t-3),] > 1]
> ELy(t) - Ely(e) |y(t-1),5 > D¥:|y(e=3),] >

tet F,(t|e=1) = E[f(y(t)) |y(t-}),j > 1]

v
—

(4)

= g,(t,0,)

Since the conditional distribution of f(y(t)) given y(t-j),j > 1 is normal,

we can use condition (B1) and rewrite it as follows:
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EL(y(e) - EGv(0) |y(t=3),5 > 1)) |y(e=3), > 1]
> E[(f(y(t)) - ?z(tlt-!))zlv(t-j).j > 1/exp[2E(In £' (y(t) |y(t-j),
i>nl (5)
Using (b)
In oy > In ELGy(e) = Ely(e)|y(t=3), 2 DY ]y(e=)),) > 1
% > Inp, 26(In f' (y(t))|y(t-j),j > 1)]

i using (5) and definition of Py

>1Ino, 2E(1n £ (y(t)) (6)
Lin & 1n[P(c, 1M /P (c, 1E ()]
= :im (0.5 [h,(E(N)) - h, (E(N))1/N]
N

Lim [2(1/N) J 1n f'(y(t)) - In p, + 1np, + 0(log N/N)]
N-seo t=} 2

{v

k3 > 0, by (6)

or

«P(CZIE(N))/P(Cllg(N)'/N ~ exp[k3], for large N

kil iy




